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1. – Introduction and background

The nonlinear elastic behaviour of earth materials is an extremely rich topic, one that
has broad implications to earth and materials sciences, including strong ground motion,
rock physics, nondestructive evaluation and materials science (e.g., [1, 2]). The mechan-
ical properties of rock appear to place it in a broader class of materials, one we call the
Structural Nonlinear Elasticity class (also Mesoscopic/Nanoscale Elasticity, or MS/NSE
class). These terms are in contrast to materials that display classical, Atomic Elastic-
ity, such as most fluids and monocrystalline solids. The difference between these two
categories of materials is both in intensity and origin of their nonlinear response. The
nonlinearity of atomic elastic materials is due to the atomic/molecular lattice anhar-
monicity. The latter is relatively small because the intermolecular forces are extremely
strong. In contrast, the materials considered below contain small soft features that we
term the “bond system” (cracks, grain contacts, dislocations, etc.) within a hard matrix
(grains, crystals), producing very large nonlinear response. In these materials, hysteresis
and relaxation (slow dynamical effects) are characteristic, none of which appear in atomic
elastic materials.

We begin with a brief historical background from nonlinear acoustics to the recent
developments in rock nonlinearity. This is followed by an overview of some representa-
tive laboratory measurements which serve as primary indicators of nonlinear behaviour,
followed by theoretical development, and finally, mention a variety of observations of
nonlinearity under field conditions and applications to nondestructive testing of materi-
als.

Our goal is not to survey all papers published in the area but to demonstrate some
experimental and theoretical results and ideas that will help a reader to become oriented
in this broad and rapidly growing area bridging macro-, meso-and microscale (nanoscale)
phenomena in physics, materials science, and geophysics.

1.1. On “classical” nonlinear acoustics. – The term “nonlinear acoustics” refers to
acoustical waves in compressible media that have small but finite amplitudes. These
waves are described by nonlinear equations following from the general governing equa-
tions of continuous media for moderate-amplitude displacements when the nonlinear
terms are small compared with the linear ones (which does not mean that their effect
on the process is small!). For fluids, the fundamental achievements in the theory of non-
linear waves were made in 18th and 19th centuries by Euler, Lagrange, Poisson, Stokes,
Riemann, Rankine, Hugoniot, and others. In particular, a cumulative steepening of a
nonlinear wave with its eventual “breaking” and formation of a discontinuity-shock wave
(fig. 1) was predicted after intensive research and discussions. Specific problems related
to the development of nonlinear acoustics were then considered by Rayleigh, Eikhenwald,
and later, in the 1930s, by Fay and Fubini who proposed solutions describing harmonic
generation in sound waves. In 1935 Thuras and Jenkins were apparently the first to
investigate this phenomenon experimentally. An important step was made in 1948 by
Eckart who derived solutions to nonplanar finite-amplitude sound waves.

It was not until the late 1940s and into the early 1960s, however, that the domain of
nonlinear acoustics began to develop into an organized discipline. This was due originally
to the development of jet aircraft at the end of world war II, and to naval applications,
especially to the development of the parametric array by Westervelt in the USA and
Zverev and Kalachev in Russia, in the late 1950s-early 1960s. The idea behind the para-
metric array is to obtain directed radiation of a low-frequency signal from the nonlinear
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Fig. 1. – Wave distortion as a function of normed distance, σ (σ = 1 corresponds to the beginning
of shock formation). The bottom figure is for large distances (σ � 1) when the wave returns to
an almost harmonic profile due to stronger damping of higher harmonics.

interference of two narrow, finite-amplitude, overlapping high-frequency acoustic beams
close in frequency to each other. Nonlinear interaction between the two beams creates a
difference-frequency wave generated throughout the volume of interaction (fig. 2). Such
a system can be used as a “virtual” antenna that radiates a directed, low-frequency sig-
nal without sidelobes. The idea can be applied in reverse, as well, to the reception of
a small low-frequency signal by interaction with a strong high-frequency acoustic beam.
Despite their low efficiency, parametric arrays have found their application, particularly
in marine sonars (see, e.g., [3]).

The experiments on dynamic nonlinear effects in solids started as early as in 1950s.
Detailed experiments on harmonic generation in crystals were performed by Zarembo and
Krasil’nikov in Russia and, most thoroughly, by Breazeale in the USA; for early results
see, e.g., [4]. Anomalously strong hysteretic nonlinearities in metals were observed that
probably correspond to the structural (mesoscopic) nonlinearity associated with dislo-
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1.  Source simultaneously emits
two high intensity primary waves
at frequencies f1 and f2.  They beat 
together in amplitude modulation.

2.  Nonlinear interaction occurs.  waves
at the sum  (f1 + f2) and 
difference (f1 - f2) frequencies
are created in a volume
contained by the primary
beams out to ranges where the
primary waves are absorbed.

3.  At large distances only the directed 
difference frequency wave beam exists because
the input frequencies have dissipated.

f1
f2

(f1 - f2)

Fig. 2. – Concept of the parametric array.

cations (e.g., [5]). In an acoustical experiment with a metal ring resonator [6] effects of
strong dynamic nonlinearity(1) were observed which included harmonic and subharmonic
(parametric) generation and slow relaxation of nonlinearity (slow dynamics) which are
presumably due to mechanisms of structural nonlinearity discussed below for rocks.

More recently, various other applications of nonlinear acoustic effects in nondestruc-
tive material testing, biology, and other areas have been developed to some degree, and
these areas are also growing rapidly. New physical effects such as self-focusing, wave front
reversal, and others similar to those seen in laser optics and plasma physics have been ob-
served. For more information on nonlinear acoustics see the recent book by Naugolnykh
and Ostrovsky [7] and the paper collection edited by Blackstock and Hamilton [8].

1.2. Nonlinearity and earth materials. – In the 1940s Birch’s group at Harvard Univer-
sity began study of the static nonlinear properties of rock [9]. These studies, conducted
in large mechanical presses, were designed to interrogate the stress-strain relation (or the
equation of state, EOS, as we will call it here) in rock samples at strong, low-frequency

(1) Here dynamic elastic nonlinearity is defined specifically to include wave studies in materials
at dynamic strains approximately equal to and less than roughly 10−4.
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forcing (near dc). Static tests were aimed at interrogating the nature of the earth’s inte-
rior in terms of pressure and temperature response, and to predict mineral assemblages
and mineral phases in the earth’s lower crust and mantle. These studies have been invalu-
able in understanding and modeling physical properties and inferring the composition of
the earth’s interior.

In the late 1950s and early 1960s, shock wave physical experiments aimed at obtaining
high pressure-temperature dynamic elastic constants of minerals were undertaken. Much
of the early work in this area was developed in Los Alamos (USA) by McQueen and his
colleagues, for instance.

In the early 1970s, Stacy’s group at the University of Queensland wrote a series of
papers on mechanical hysteresis in rocks at low strains [10]. Their work showed that
nonlinear response persists in quasistatic tests at strains as low as 10−6, and perhaps
lower. Some of the first low-strain nonlinear elasticity studies (strains of the order of
10−7) of which we are aware dealed with nonlinear effects so that they could be avoided
in linear, resonant bar wave studies [11].

In the early 1980s Bakulin and Protosenya [12] and a group at the Radiophysical
Institute and the Institute of Applied Physics in Nizhny Novgorod, Russia began studies
of nonlinear response in earth materials. In parallel, the idea of the parametric array
as applied to the earth led researchers in Los Alamos into dynamic nonlinear elasticity
studies beginning in 1982.

As early as 1986, there was an international symposium on nonlinear seismology orga-
nized by the Moscow Earth Physics Institute, held in Sudzal, USSR, and soon thereafter,
a special issue of Physics of the Earth and Planetary Interiors (vol. 50, No. 1, 1987)
devoted to nonlinear seismology appeared. More recently, in 1996-1999, the first four
International Workshops on Nonlinear Mesoscopic Elasticity were held at the Institute
of Geophysics and Planetary Physics at Los Alamos National Laboratory, the fifth was
held in 2000 in Santa Margarita Ligure, Italy, and the sixth in Leuven, Belgium, at the
Catholic University.

2. – Key experimental indicators of nonlinearity in rocks

Dynamic nonlinear response may manifest itself in a variety of ways, including reso-
nant frequency shift, harmonic generation, frequency mixing, nonlinear attenuation and
slow dynamical effects, all of which will be illustrated below. Here we present some key
indicators of nonlinear behaviour from static and, mostly, dynamic data from labora-
tory experiments. These experiments provide not only qualitative but also quantitative
measures of the nonlinearity.

2.1. Quasi-static experiments. – The most fundamental observation of elastic non-
linearity in solids comes from quasi-static tests of stress vs. strain. Figure 3a shows a
typical experimental configuration where stress is induced along the axis of a sample, and
strain was measured in the same direction. Figure 3b shows a pressure history “protocol”
for one such experiment and fig. 3c shows experimental results illustrating such a depen-
dence (e.g., [13-15]). The primary characteristics illustrated by such an experiment are
1) extreme nonlinearity in the stress-strain dependence; 2) hysteresis (i.e., the behaviour
depending on stress history); and 3) the material exhibits discrete memory (also called
end point memory) (e.g., [1]). Discrete memory can be described as follows. If a partial
stress cycle is conducted during the quasistatic cycle (e.g., small loops inside the big loop
in fig. 3c), the outer (low frequency) loop is maintained; discrete memory is a memory
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Fig. 3. – (a) Typical experimental configuration for a static stress-strain experiment along a
single axis (uniaxial). (b) Stress history or “protocol” for the stress-strain data shown in (c).
(c) Stress-strain experimental result for sandstone. The plot illustrates a nonlinear stress-strain
relation, hysteresis, and end point (discrete) memory. (d) Velocity vs. pressure results from
Gist [18]. The open characters represent data taken before the epoxy injection. The triangles
are the first upward pressure cycle, the squares are the first downward pressure cycle, and the
circles are the next upward cycle (this is the normal quasistatic conditioning observed in this
type of experiment due to elastic and plastic deformation). The dark circles show the result
after the flat pores (the bond system) are filled with epoxy. As a result, the hysteresis in
pressure-velocity disappears, and there is almost no velocity dependence on pressure.
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of the previous maximum strain state. Similar results have been obtained by numerous
researchers, e.g. [16, 17,14].

The origin of the hysteresis and discrete memory is in the bond system, as Gist [18] and
Zinszner (unpublished) have shown. In their experiments, a rock sample was tested in a
quasistatic experiment similar to that shown in fig. 3a. During the pressure test, velocity
was measured by the time delay method or by resonance. Next, the sample was placed
in vacuum, and liquid epoxy was injected into it. Following this, the sample was spun
in a centifuge to eliminate epoxy from the rounded pores. The quasi-static experiment
was then repeated, and the hysteresis and dependence of modulus with pressure nearly
disappeared. The results from Gist are shown in fig. 3d.

The manifestations described above have important consequences for the material
elastic modulus because the modulus is the derivative of the stress with the strain,
∂σ/∂ε. In short, static tests indicate that the value of the modulus depends on the stress
history and the current EOS amplitudes, and changes discontinuously at the stress strain
cusps. This is a well-known but underappreciated observation.

2.2. Dynamic indicators. – There exist numerous methods by which to observe non-
linear effects. In the acoustics of liquids and gases, the harmonics of a periodic trav-
elling wave can be monitored out to the distance of shock wave formation. However,
for relatively low-frequency and low-amplitude sound in solids, it is difficult to obtain
quantitative results from travelling wave experiments due to strong wave dissipation and
to the fact that one cannot easily make measurments at arbitrary points in the media, as
in liquids. Nonetheless, travelling wave measurements are important, e.g., for parametric
array development and nonlinear imaging.

The majority of quantitative measurements for rocks have been performed with res-
onant bar experiments. Due to the amplification that resonance provides, it is perhaps
the most sensitive manner by which to observe nonlinear behaviour, even at extremely
small dynamic strains, as small as ε = 10−9. (In a simple one-dimensional configuration,
ε = ∂u/∂x, where u is the displacement.)

Quantitative indicators of nonlinear behaviour from dynamic experiments in solids
are based on the relation between the detected strain amplitude of the drive frequency
and the following: 1) harmonic amplitudes, 2) wave cross-modulation amplitudes, 3) res-
onance frequency shift, and 4) amplitude-dependent losses. Lastly, 5) the slow dynamical
nonlinear response is used as a quantitative indicator. It is the observation of these ef-
fects that indicates that the material is behaving nonlinearly and may tell us about the
nature of the nonlinearity, for instance, whether or not nonclassical behaviour such as
hysteresis is present in dynamic processes. In the following we outline these quantitative
nonlinear indicators.

2.3. Nonlinear resonance frequency shift . – Resonance frequency shift is a sensitive
measure of the amplitude dependence of the resonance frequency that can be used for
calculation of the average modulus and wave speed. A typical 1-D resonance experi-
mental configuration for obtaining amplitude at the bar end vs. wave drive frequency
(e.g., [19] and [20]) is shown in fig. 4. Measurements are normally made of both up-
ward and downward swept frequency response over a frequency interval that contains
the fundamental mode resonance. Typically, tens of frequency sweeps are repeated at
successively increasing drive voltages over the same frequency interval in order to monitor
resonant peak shift. Acceleration is frequently measured from which strain is calculated.

Figure 5a shows resonant bar results from an atomic elastic material (polyvinylchlo-
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Fig. 5. – (a) Resonance acceleration response of polyvinylchloride (PVC) for several drive levels.
(b) Resonance acceleration response of Fontainebleau sandstone, for increasing drive. (c) Time
and frequency domain signals from relatively low amplitude, but nonlinear, drive levels (right),
and at large drive levels (left). The time signals are obtained at peak resonances in each case.
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amplitude for various rocks under various experimental conditions. Slope of approximately one
indicates that nonclassical nonlinearity is responsible for the peak shift.

resonant behaviour in a rock [19]. The material is Fontainebleau sandstone under ambient
temperature and pressure conditions. The solid and dotted lines in fig. 5b indicate that
the resonance response is dependent on the direction of the frequency shift (up or down).
This is a manifestation of slow dynamical behaviour. Figure 5c shows the time and
frequency response at relatively small (right) and large amplitudes (left), respectively.
Clearly the intensity of the distortion increases significantly with wave amplitude.

By plotting the frequency shift as a function of the fundamental-mode strain ampli-
tude, we can infer key information about the nature of the nonlinearity, and, based on
the appropriate model, extract the nonlinear coefficients. For example, fig. 6 illustrates
such a result for various rocks. The dependence between the detected frequency shift and
the strain has a power law relation of one in all cases. This is unexpected behaviour for
classical nonlinear acoustics where this dependence is quadratic, and implies that hys-
teresis is present at not only the static forcing level as we saw earlier, but the dynamic
level for small strains. We will address this issue further.

A complementary series of experiments was performed by Nazarov et al. [21]. A
typical experimental configuration is shown in fig. 7a. The measurements were performed
in samples 30 cm × 8 mm × 8 mm composed of granite and for a cylinder 20 cm long
and 5 cm in internal diameter, filled with a wet sand; the latter was exposed to intensive
sound over 4 hours to obtain stable results. Figure 7b shows the resonance frequency shift
for these materials as a function of exciting strain ε0. As with the data shown in fig. 6,
the shift is linearly proportional to ε0 for the granite and the sand. Of significance is that
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experimental setup. (b) Resonance peak shift vs. strain amplitude ε1. The excitation frequency
was 3.6 kHz (first-mode resonance) [∆f = f − f0].

these are some of the very few existing measurements in unconsolidated material, the
sand, and they show the same dependence with strain as the rocks. (Notably, Nazarov
found a different dependence in another material, marble. This may be due to the
influence of slow dynamics, which can significantly affect this type of measurement.

2.4. The effect of fluids. – Nonlinear experiments in sandstone and limestone at partial
water saturation show that nonlinear response has a stronger dependence on the presence
of water than the linear characteristics, wave speed and dissipation [22], for example.
Figure 8a shows resonant frequency shifts for Lavoux limestone, conducted at water
saturations ranging from 1% to 98%. The nonlinear response in fig. 8, as measured by
the change in resonant frequency vs. strain, shows nearly an order of magnitude increase
from 1–25% saturation. For higher saturations, the response remains approximately the
same. Fluids complicate the nonlinearity significantly due to capillary forces and their
effect on the matrix and pore space. These effects are well described in Van Den Abeele
et al. (2000) [22], see also [81].

2.5. Slow dynamics. – Another important characteristic of nonclassical materials is
slow dynamical (relaxation) response. Slow dynamics in this context means that the
average material modulus is temporarily altered (lowered) during wave excitation. After
wave excitation, it takes some time (order 103 seconds) for the material modulus to
recover to its original state. One manner in which to observe this behaviour is to monitor
the resonance frequency before and after large excitation (e.g., [23, 24]). That is, after
measuring the linear resonant peak, the sample is driven at large amplitude for several
minutes. The low-amplitude resonant peak is then monitored until the resonant peak has
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returned to its original frequency. An example of slow dynamics is illustrated in fig. 9 for
several different rock types and for concrete. The slow dynamical scaling of the resonance
frequency recovery in time is logarithmic [24]. This result has important consequences
regarding the origin of the nonlinear response (to be addressed). In recent work [25] it has
been discovered that damaged atomic elastic materials also display slow dynamics. The
class of materials displaying slow dynamics is expanding rapidly. An important aspect
regarding slow dynamics is that if it is observed, the other manifestations of nonlinear
response are observed as well (wave mixing, resonance peak shift, etc.).

2.6. Harmonic generation. – A large series of experiments of the type shown in fig. 4
have dealt with measurement of harmonic amplitudes via Fourier analysis [19]. The
slopes of the second and third harmonic amplitudes with the strain amplitude of the fun-
damental provide further quantitative information about the nature of the nonlinearity.
For instance, a typical result for Berea sandstone is shown in fig. 10a. The fact that
the second- and third-harmonic amplitude slopes are nearly identical also indicates that
classical nonlinearity is not sufficient to explain such behaviour.

The amplitude dependences of second and third harmonics obtained in the experiment



12 L. A. OSTROVSKY and P. A. JOHNSON

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0

-2

-4

-6

-8

-10

-12

-14

 log (t /1s)

(δ
f /

 f 0)
 / 

|ε
|

Berea (vacuum)
(/20)

Concrete (intact)
(/100)
Concrete 
(damaged) 
(/100)

Lavoux

Berea
Fontainebleau (/100)

Fig. 9. – Slow dynamical response in several rock types and in concrete. The time-dependent
shift δf of the recovering resonant frequency, normalised to the asymptotic value f0, per unit
driving strain |ε|. Sample names are indicated in the figure, and some scale shifts were divided
by the indicated factors for plotting. Lavoux is a limestone, Berea and Fontainebleau are
sandstones, and one sample of concrete was more damaged than the other (damaged vs. intact,
respectively).

in fig. 7a [21] are shown in figs. 10b and 10c, respectively, for granite and wet sand. These
results further indicate that the EOS is nonanalytic, and again that unconsolidated
material behaves like rock.

Most experiments have been conducted in Young’s mode resonance, however, some
torsional measurments have been conducted as well by Bonner and colleagues at Lawrence
Livermore National Laboratory in California [26,63]. The results of this work support a
hysteretic model of the EOS [27].

2.7. Wave modulation experiments. – A simple wave modulation experiment is con-
ducted as follows. Two single-frequency, continuous waves, one of high and another of low
frequency (fig. 11a), are excited in the sample as illustrated schematically in fig. 11b. The
sample acts as a nonlinear mixer (multiplier), so that the sum and difference-frequency
waves (sidebands) are created, in addition to harmonics, as illustrated in figs. 11c, d.

Figure 11e illustrates an actual experiment in Berea sandstone. The plot shows the
increase in amplitude at second-sideband frequencies as the drive intensity at one in-
put frequency is increased (the other was held at fixed amplitude). The dependence,
which is the same as for the first side-band amplitude (not shown), once again indicates
nonclassical nonlinearity.

2.8. Nonlinear dissipation. – Amplitude-dependent loss is a well-known phenomenon
in metals where it is attributed to hysteresis at dislocations. For rocks, for soils and in
earthquake studies (e.g., [28]) nonlinear dissipation is nearly always observed, and is an
additional indicator of hysteresis in the EOS. Below we mention two examples.

Amplitude-dependent attenuation in earth materials was observed in experiments on
nonlinear interaction between low- and high-frequency signals [29, 32]. The experiment
was the same as that shown in fig. 7a. During the low-frequency, high-amplitude resonant
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U1 in river sand and granite. (c) Dependences of the amplitude of the third harmonic ε3 on the
fundamental strain amplitude ε1 in river sand and granite. The fits correspond to a power law
relation of 2 for both materials, indicating nonclassical nonlinearity.

excitation (“pump wave”), a longitudinal ultrasound pulse (frequency 200 kHz, pulse
duration 70 ms) was generated to propagate for some distance along the bar, after which
its amplitude was measured and the spatial damping rate was calculated. In the presence
of the low-frequency mode, the ultrasound damping rate increased in proportion to the
low-frequency strain amplitude ε1 in granite and sand, and to ε21 in marble (fig. 12). This
is also the effect of dissipative nonlinearity. Note that the observed effect was reversible.
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Fig. 11. – Typical wave modulation experiment. (a) Two pure-tone sinusoidal inputs at two sep-
arate frequencies. (b) Experimental configuration. (c) The time-series output due to nonlinear
mixing in the sample. (d) The spectral response of the time signals in (a) and (c). Sidebands of
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frequencies in Berea sandstone, indicating nonclassical nonlinearity.
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wave for three materials. For the sand and granite, the dependence is X1(L) ∝ ε1; for the
marble X1(L) ∝ ε21. (b) From the experimental configuration described in fig. 4, resonance
acceleration amplitude vs. frequency at very small acceleration levels. (c) From the data in (b),
1/Q (attenuation) vs. strain. Note that, even for very small strain levels, nonlinear attenuation
exists in this sample (the nonlinear frequency shift, albeit small, is present as well).

Similar experiments for control samples (glass) did not reveal any significant nonlinear
effects.

Figures 12b, c show results from a resonance experiment in Berea sandstone [20] under
vacuum conditions at very small acceleration and strain levels like that shown in fig. 4.
In the resonance data shown in fig. 12b, a very small frequency shift and peak broadening
can be observed. Figure 12c shows the actual change in 1/Q extracted from 12b. It is
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Fig. 13. – (a) Experimental configuration for pulse-mode experiments. The source transducer
emits a tone burst and an accelerometer measures the characteristics of the tone burst at the
source. Detectors placed at various distances measure the spectral evolution of the time signal.
Numerous detectors were either embedded in the sample or placed on the surface, depending on
the experiment. (b) Source displacement spectra for a 13.75 kHz drive toneburst. Observations
for progressively increasing drive level are illustrated by the various lines. (c) Displacement
spectra after the wave has propagated 58 cm for a drive at 13.75 kHz. Line types correspond
to those in (b) and illustrate progressive growth of harmonic amplitudes with source amplitude.
(d) Normalized (linear attenuation eliminated) second-harmonic displacement amplitude as a
function of distance. Error bars indicate uncertainty of measurement amplitude.

remarkable that nonlinear attenuation can occur at such small strain levels. In order
to extract the attenuation from data collected at such small strain amplitudes, Guyer
developed a method called “Constant Strain Analysis” which can be applied universally
to small-strain, resonance data.
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2.9. Experiments with travelling waves. – The cumulative character of nonlinear wave
evolution can be observed from the variations of a travelling wave during propagation.
For instance, an experimental observation of the spectral evolution of a travelling wave as
a function of distance for an initially narrow-band acoustic impulse [33] is illustrated in
fig. 13. In order to account for transducer contact effects (source effects) and linear atten-
uation, a spectral ratio method was applied. In fig. 13d, the relative harmonic amplitude
is obtained by taking the ratio of the second-harmonic amplitude to the amplitude of
a linear elastic wave input at the same frequency 2f . In this way the linear attenua-
tion and possible source nonlinearity effects have been eliminated. The higher-harmonic
displacements have amplitudes that are a sensitive function of the drive amplitude and
propagation distance (see eq. (25) below).

Another similar experiment is difference-frequency wave generation by interaction of
two high-frequency waves, as in the parametric array mentioned above. The first pub-
lished laboratory result demonstrating a parametric array in earth solids was from the
Los Alamos group who developed the Frequency Domain Travel Time method for ex-
tracting the difference-frequency wave out of noisy data [34]. From later work applying
an experiment similar to that described in fig. 13a, fig. 14 shows the evolution of the fre-
quency spectrum of the low-frequency field with distance from the two-frequency source
(normalized to eliminate the effects of linear dissipation), that increases with distance,
as predicted by theory (unpublished data from Johnson and Meegan).

Directivity of an analog of a parametric array in a solid is shown in fig. 15. The beam
intensity pattern of a difference frequency wave measured at a fixed distance from the
source shown in fig. 15a, with the beam patterns of the primary wave frequencies shown
in fig. 15b.

Another observed effect is “self-demodulation”, also well known in nonlinear acoustics.
This is a parametric array-type effect as well, where a high-frequency tone burst (also
known as a carrier wave) produces a low-frequency component by nonlinear interaction
in the course of propagation. Eventually all that is left of the tone burst is a squared
and differentiated version of the original envelope function (“video” pulse). All of the
high frequency dissipates. Zaitsev et al. [35] excited a high-frequency (180 kHz) pulse in
dry and wet river sand, and obtained a self-demodulated wave (fig. 16-1) and provided
a theoretical description.

Figure 16-2 shows a result of a pulse-mode experiment by Johnson and McCall [36]
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Fig. 15. – Beam pattern of collinear difference frequency formed by parametric interaction in
Berea sandstone. (a) Geometry of the block of sandstone (the thickness of the sample was
0.5 m), the location of the source and detecting transducers and the raypaths. To minimize the
number of detectors used in the experiment, two source positions were used to obtain both sides
of the beam pattern. (b) Polar plot showing comparison between the difference-frequency signal
created in the rock by nonlinear interaction (parametric array) shown as A∆f , and the primary
wave beam patterns, Af1 and Af2 . The beam pattern is shown as iso-intensity (in dB) vs. the
angle from the axis of the source. Zero degrees corresponds to the shortest raypath, directly
across the sample. The high-frequency waves were in the range of 200 kHz, and the difference
frequency was approximately 7 kHz (from Johnson and Shankland 1991, unpublished).

identical to that shown in fig. 13a conducted using a broad frequency-band source in a
sandstone bar. (This experiment is an analog of the well-known Pestorius-Blackstock
experiment in air [37].) For detected displacements at the fundamental frequency as
small as 3 · 10−8m, the composition of the displacement frequency spectrum at 1 m is
extremely rich in frequencies that are not present at the source. As drive amplitude
is increased, the spectrum becomes progressively richer (broader) due to the nonlinear
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Fig. 16. – 1. Self-demodulation of a high-frequency pulse in sand under the static pressure of
9000 Pa. (a) Time series of a primary wave, and (b) detected pulse. 2. Broadband displacement
spectra from pulse-mode experimental studies from an experimental configuration identical to
that shown in fig. 13a. The source signal is a Blackman window of peak frequency, approximately
20 kHz and the signal is band-limited at 7 and 32 kHz. (a) The source displacement spectrum
at successively increasing applied voltages. (b) Displacement spectrum 1 m from source at
increasing applied voltages corresponding to drive levels in 16-2a. Note the increased complexity
of the spectrum at larger drive levels for the signal at 1 m.

elastic wave interaction in the material. This experiment has potential applications to
seismic waves, especially the near-source waves.

2.10. Noncollinear interactions of acoustic beams. – Rollins et al. [38] demonstrated
that pulse-mode body waves could interact at angles in solids, and produce sum and dif-
ference frequency waves, based on the resonance conditions (selection rules) well known
in nonlinear optics and acoustics. E.g., for a “three-wave interaction” with frequencies
ω1,2,3, and the respective wave vectors k1,2,3 these conditions are ω1 + ω2 = ω3 and
k1 + k2 = k3. That is possible if waves of different types are interacting, for instance,
two compressional and one shear wave. This type of wave mixing is also known as
noncollinear wave interaction. The Rollins et al. experiment was duplicated in several
experiments with rock [39,40] where two compressional waves interact to create a shear
wave. Figure 17a, b shows the experiment and results of such an experiment conducted
on a sandstone sample, for a fixed interaction angle, while progressively altering the in-
put wave frequency ratio. The selection rules derived from the nonlinear wave equation
indicate that only one frequency ratio will optimize the ∆f mixing, and the peak am-
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Fig. 17. – Noncollinear wave interaction. (a) Block diagram of experimental configuration used
in noncollinear wave experiments for the case of two compression waves interacting to create a
shear wave. k1, k2, and k3 are wave numbers, and φ illustrates the input wave interaction angle.
P and S refer to compressional and shear wave transducers, respectively. (b) Noncollinear wave
experimental result. Amplitude dependence of the difference frequency beam as a function of
drive frequency f2 for Berea Sandstone. f2 is swept over a frequency interval from 50 to 450 kHz,
and the drive frequency f1 is fixed. The predicted peak amplitude should occur at f2/f1 = 0.61,
or f2 = 305 kHz. The observed peak occurs at f2/f1= 0.59 (295 kHz). The slight discrepancy
is due to the anisotropy of the material, not accounted for in the prediction.

plitude value of the created shear wave is that predicted by the selection rules. This
configuration can be used for imaging of specific volumes in the interior of materials.

3. – Theoretical models

From the above measurements one can calculate a set of fundamental nonlinear pa-
rameters of the material and attempt to use them in order to infer the nature of the
nonlinear response, and to create models. A theory must correctly predict 1) the static
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hysteresis and discrete memory, 2) the resonance frequency-strain amplitude dependence,
3) the second- and third-harmonic amplitude variation with the fundamental amplitude,
4) the first- and second-order sideband scaling from wave modulation, and 5) the log-
arithmic dependence of slow dynamics. The full theory of these effects has not been
constructed yet. However, the models and approaches described below provide at least
a qualitative explanation of much of the experimental evidence.

3.1. Classical theory . – The classical nonlinear theory for atomic elasticity is thor-
oughly described in the literature (e.g., [41]), and we will provide only a brief overview.
The classical theory begins with the expansion of the elastic strain energy in powers of
the strain tensor, εij . The expansion coefficients designate the components of the second-
order elastic tensor and the third-order elastic tensor. These tensors are characterized,
respectively, by 21 and 56 independent components for an arbitrary anisotropic medium
(in the lowest-order, triclinic material symmetry) and by only 2 and 3 components, re-
spectively, in the highest-order symmetry (isotropic material).

The equation of motion in Lagrangian coordinates is

ρüi =
∂σij

∂xj
,(1)

where ui are the components of the displacement vector, u, and ρ, σij and ü designate
the density, the stress tensor and the particle acceleration, respectively.

To gain insight one can consider the one-dimensional case. For a longitudinal wave
(P -wave) propagating in an isotropic medium, a one-dimensional wave can exist with
only nonzero components σxx = σ and ux = u or εxx = ε = ∂u/∂x. The corresponding
equation of motion can be written as

ρ0
∂2ε

∂t2
=
∂2σ(ε)
∂x2

.(2)

From the energy expansion, the stress-strain relation (also known as the equation of
state, or EOS) can be written as

σ = M
(
ε+ βε2 + δε3 + ...

)
,(3)

where M is the elastic modulus (for a bar it coincides with the Young modulus, E), and
β and δ are nonlinear coefficients that can be expressed in terms of combinations of the
elastic moduli (e.g., [42]). For example, the nonlinearity parameter β can be expressed
in terms of Landau moduli, A,B,C, or Murnaghan moduli, l,m, n:

β =
3
4

+
A+B + C

2ρc2
=

3
2

+
l + 2m
λ+ 2µ

.(4)

Here λ and µ are so-called Lame coefficients. A typical order of these parameters for
atomic elastic solids is 1011–1012 Pa.

From (3) it follows that the local sound velocity is

c =
√
ρ−1dσ/dε ≈ c0(1 + βε+ (3δ − β2)/2ε2 + ...).(5)
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Fig. 18. – Two nonclassical models of the EOS from Asano (1970). (a) “Ratchet” model.
(b) “Slider” model.

It is important to note that even if the nonlinearity is anomalously large in earth
materials in comparison with that of atomic elastic media, the nonlinear terms in the
EOS are generally much smaller than the linear term. This is because ε is of order 10−5–
10−9 in dynamic experiments. Therefore, one can use relation (3) and its generalizations
for media with strong nonlinearity but only if hysteresis is not significant.

This nonlinearity can be caused by two mechanisms. The first is of a “geometrical” or
“kinematic” type, related to the difference between the Lagrangian and Eulerian descrip-
tions of motion. The other type is “physical” elastic nonlinearity. Physical nonlinearity
is described by third-order (and higher-order) terms in the expansion of the elastic energy
in ε, and accounts for the fact that stress is not a linear function of strain. Geometrical
nonlinearity is typically comparable in order to physical nonlinearity in atomic elastic
materials, such as fluids and intact solids. In rock and other highly nonlinear media phys-
ical nonlinear response is typically orders of magnitude larger than geometric nonlinear
response, and therefore, the latter can be ignored.

3.2. Phenomenological models with hysteresis. – Since the mechanisms of nonlinear
response in hysteretic materials are not well understood yet, phenomenological models
have been appealed to. Here, we illustrate some models that successfully describe the
behaviours shown earlier.

An adequate equation of state must include the dependence on the history of the
process which can be characterized by the sign of ε̇ = ∂ε/∂t:

σ = M
(
ε+ βε2 + δε3 + ...

)
+ Ŝ [ε, sign(ε̇)] ,(6)

where Ŝ is a function describing “nonclassical” effects. A specific form of Â should
follow from the material physics. In an early work by Asano [43] two basic types of the
nonclassical (hysteretic in stress-strain) behaviour were considered. One of them is of a
“ratchet” type: it starts from zero point on the (σ, ε)-plane, and has a “butterfly” shape;
it is related to the Granato-Lücke model discussed below. The second, a “slider”, starts
from zero in stress-strain space as well, but for a periodic motion surrounds this point
(fig. 18, a and b). If these elements are distributed in sizes, these curves become smooth
(see the examples below) but still preserve the same topologies. In many cases these
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Fig. 19. – (a) Hysteretic Elastic Unit (HEU) in length-pressure space. (b) Typical PM-space
representing the density of HEUs in a sample for a rock.

forms were introduced as a “best fit” for experimental values and dependences. One
example (of the first type) is the following [21]:

Ŝ =




ε− (β1/2)ε2 ; ε > 0 , ∂ε/∂t > 0 ,
ε [1 − ε0 (β1 + β2) /2] + (β2/2) ε2 ; ε > 0 , ∂ε/∂t > 0 ,
ε+ (β3/2)ε2 ; ε < 0 , ∂ε/∂t < 0 ,
ε [1 − ε0 (β3 + β4) /2] − (β4/2) ε2 ; ε < 0 , ∂ε/∂t > 0 ,

(7)

where ε0 is the strain amplitude and βi are the nonlinearity parameters. Using this EOS
enabled the authors to describe nonlinear indicators from some experiments [32]. How-
ever, for other materials the EOS had to be adjusted, so it lacks universal applicability.

The Preisach-Mayergosz Space Model.
A sophisticated model called the Priesach-Mayergoyz space (PM space) model [30], which
successfully describes the hysteretic nonlinear behaviour of rock elasticity with discrete
memory, was developed in a series of papers by our colleagues [14,44,45,13]. The model is
based in part on the work of Holcomb [31] and others who studied memory and relaxation
in rock. This model is based on assuming that the elastic properties of a macroscopic
sample of material result from the integral response of a large number of individual,
elastic elements (of order 1012, a rough estimate of the number of grain-to-grain contacts,
microcracks, etc., in one cubic centimetre of rock). Each elastic element may or may not
demonstrate hysteretic behaviour. The individual elements are combined for analysis in
what is known as PM space.

Figure 19a illustrates the behaviour of a single elastic element, called a hysteretic
elastic unit (HEU), which is characterized by a rectangular length-stress dependence.
A large number of such elements with different parameters Lo, Lc, σo, and σc (length
open and closed, stress open and closed, respectively) constitute a model of the compliant
portion of a sample material. A plot of (σc, σo) pairs (Lc and Lo) is the basis of PM space
as shown in fig. 19b. The corresponding model material is composed of a large number
of HEUs, which exhibit varying degrees of hysteresis that can be seen in PM space.
Nonhysteretic units fall on the diagonal and hysteretic units fall below the diagonal,
σo < σc. The more hysteretic an HEU is, the farther from the diagonal it resides. If
no hysteresis is present, all elements fall on the diagonal, and the model reduces to the
traditional theory described above (i.e., Ŝ in eq. (6) is zero). The density of HEUs in
PM space is given as ρ(σc, σo).

To obtain an equation of state, two assumptions are made: 1) For the PM space
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distribution density, ρ, we take

ρ(σc, σo) = B(σc)δ̂(σc − σo) + α,(8)

where δ̂ is the delta-function so that B is the PM space density of nonhysteretic HEUs
on the diagonal, and α characterizes the distribution of hysteretic elements in PM space.
In the presence of a constant prestress σ (which can be zero) the values of stress, σ, vary
from σ − σ0 to σ + σ0, σ0 being the ambient stress. Also α is assumed a small constant
in this interval. The corresponding strain is proportional to the length of an element,
L0 = Lc − Lo, which is fixed for all elements.

To obtain the stress-strain relation, we integrate eq. (8). For small acoustic pertur-
bations ∆σ, after expanding B in a Taylor series of ∆σ, we obtain the dependence ε(σ)
in a form of a series and from that, the inverse series σ(ε) in a standard EOS form (6):

σ = σ0 +K0 (1 − r∆σ) ε+K0βε
2 +K0δε

3 + η
K0γ

2

(
ε2 − (∆σ)2

K2
0

)
,(9)

where η = 1 for stress increase and −1 for stress decrease.
The parameters in this equation are related to α and the constants in (9), namely

K0 = 1/B0L0 , β = − B1

2B0
, γ = −α/B0.(10)

Here B0 is the zero-order term in expansion of B in σ. The first three terms on the r.h.s.
of (9) are a linear response, quadratic and cubic “classical” nonlinearities, respectively.
The last term is proportional to α and is due to the presence of hysteretic elements. Note
that in the linear approximation, ∆σ ≈ K0ε and the modulus K0 is of order 1010 Pa.
For example, at the strain amplitude, ε0, of 10−6, the stress amplitude, ∆σ ≈ K0ε0 is
approximately 104 Pa (0.1 bar).

Hence, we have a relationship between a “macroscopic” stress-strain relation and the
distribution of hysteretic elements that can be helpful for understanding the physics.
Schematically in figs. 20a-d we see step-by-step how the model can predict the EOS be-
haviour of rock from PM space. This model has been successfully applied to describe
the static and dynamic nonlinear behaviour noted above (high nonlinearity, hysteresis,
discrete memory), see e.g., [14]. The model captures all of the dependences in the har-
monics and resonant peak shifts shown earlier, for strains of 10−3–10−9 and frequencies
from near DC to at least several megahertz. For illustrative purposes, in fig. 21 we com-
pare and contrast typical expected strain dependences of frequency shift, harmonics, and
side bands derived from classical theory (eq. (3)) and from the PM space model.

The PM space model remains a phenomenological description that does not contain
the physical mechanisms of nonlinear response. Once the mechanism(s) is (are) identified,
they can be placed in the model.

4. – Physical models of structural nonlinearity

An adequate physical model of rocks must be associated with their complex structure.
As already mentioned, strong nonlinearity is associated with the presence of hard and
soft phases, where the soft phase occupies a much smaller volume (up to nanoscale
sizes) but it is subject to strong deformation and is the origin of the nonlinear response,
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Fig. 20. – Schematic illustrating PM space prediction of stress-strain. In the left-hand column
the evolution of the PM space is shown. σo and σc are the opening and closing pressure of
hysteretic units, respectively. In the right-hand column, the corresponding evolution of the
stress strain is shown. (a) Evolution from zero pressure to pressure A produces the first half
of the full stress-strain curve. All hysteretic units in PM space are closed at pressure A (black
region). Following the pressure back to zero pressure at point B, the hysteretic stress-strain
curve is constructed. All units in PM space have re-opened (white). (c) The pressure is then
taken to point C. All units in black are closed. (d) A small pressure deviation is made, where
presssure is decreased to D and then taken back to C. The corresponding loop in stress-strain
is formed by this procedure. Closed HMUs in PM space shown in black and open in white.

whereas the hard medium is relatively insensitive to deformation(2). We call the soft
portion the “bond system”, and this includes the contacts between grains, microcracks,
etc. (e.g., [46-49]).

An analogue for the soft-hard system is well known for liquids with bubbles where the
maximum nonlinearity is observed for a gas volume fraction of less than 10−3 (e.g., [7]).
Under such conditions, the average density of the medium is only slightly affected by

(2) Hence, the measured strain is due to the deformation of the soft bond system. Because
hard portions of the system prevail in size, the measured bulk strain it is an underestimate of
the local strain by at least two orders of magnitude. This is an important and often overlooked
consideration.
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Fig. 21. – Comparison of strain dependences for frequency shift, harmonics and sidebands for a
classical model (a), and for a hysteretic model (b). ∆ω = ω − ω0, where ω0 is the fundamental
frequency, Aω1 is the fundamental amplitude from the Fourier transform of the time series
signal, Aω2 is the amplitude of the second harmonic, and Aω3 is the amplitude of the third
harmonic.

the presence of bubbles. At the same time, the pressure in the gas phase dramatically
affects the compressibility of the gas-liquid mixture and especially the dependence of the
sound speed on the pressure, which characterizes the nonlinear response of the medium. A
similar behaviour is demonstrated by waterlike porous media in which the shear modulus
is small compared with the bulk modulus (i.e., the shear wave velocity is much smaller
than that of longitudinal waves) (e.g., [7]). In such cases the parameter of nonlinearity
β may reach values of 104–105, as compared to 1 to 10 for “classical” gases, liquids and
solids.

In the following discussion, let us test several simple physical models in order to see
if they may provide some insight into the mechanism of nonlinear response.

4.1. Hertzian contacts. – A starting point model of nonlinearity in rock can be based
on representing the rock as a system of dry, contacting grains as shown in fig. 22. These
contacts are much softer than the matrix material, the grains themselves, and therefore
play the primary role in the nonlinear elastic response of the medium. In this model, the
distance change ∆ between the grain centres is related to the compressing force F by the
Hertzian contact law (e.g., [41]),

∆ =
(

3(1 − ν2)F
4ER1/2

)2/3

,(11)

where E is Young’s modulus of the material, ν is Poisson’s ratio, and R is the grain
radius.
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Fig. 22. – An aggregate of contacting grains.

For a dry medium composed of spheres, this model yields the following one-dimensional
EOS relation [47]:

σeff(ε) =
n (1 − q)E
3π (1 − ν2)

ε3/2,(12)

where σeff is effective stress, n is the average number of contacts per grain and q is the
fraction of empty (porous) space per unit volume. For a random packing of nonconsol-
idated grains, n= 8.84 and q = 0.392 [50]. It is evident that the contact contribution
to the sound speed, c = (ρ−1dσeff/dε)1/2 ∝ √

ε, tends to zero at small positive strains
(negative strain means that grains separate, and no contact forces are present). However,
dc/dε, which is one measure of nonlinearity, tends toward infinity! In real experiments
the aggregate is subject to a static pressure creating a constant prestrain ε0, and for small
one-dimensional perturbations, we can expand c into the series (3), where the modulus
is

M =
n (1 − q)E
2π (1 − ν2)

ε
1/2
0 ,(13)

and the quadratic and cubic nonlinearity coefficients are

β = 1/2ε0 , δ = 1/6ε20.(14)

In rock the role of prestrain can be played by a hard, consolidated portion of contacts
and/or by the pressure from the upper layers of the earth.

Some interesting properties of granular materials follow from these simple results.
For instance, the nonlinearity parameters do not depend on grain size or on their com-
position, but on prestrain ε0, i.e., on static pressure. These results were confirmed in
experiments with lead shot and tuff excited at frequencies of few kilohertz by a vibrating
table [46]. The values of ε0 were controlled by loading masses. From measurements of sec-
ond and third harmonics, both formulae (14) agreed with the experiment; the parameter
β exceeded 103 and δ the values of 5 × 106.
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Fig. 23. – Granular medium with rough contacts.

Hence, this model predicts a very strong nonlinearity due to the contacts as com-
pared with the solid matrix, and it admits many effective extensions. One of them deals
with small-scale multicontact interfaces between larger grains, yielding a significant lo-
cal amplification of nonlinearity from local stress concentrations. There is significant
evidence that the stress path in rocks may not be homogeneous (e.g., [1]). Preliminary
estimates [49] show that, for larger grains (of radius R) in contact with smaller hemi-
spheres of radius r (fig. 23), the nonlinear portion of the EOS (12) and, correspondingly,
nonlinearity parameters (14) acquire an additional term of s(R/r)3/2, where s is the rel-
ative contact area occupied by small-sphere contacts (the remaining area is assumed to
be cemented). This approach (see also [51]) can be extended to more complicated fractal
structures. Note that in [48] experiments similar to those in [46] were described but with
larger and larger grains which were not exactly spherical and had different sizes. In this
case, nonlinearity was even stronger, and for the third harmonic, a nonclassical, approx-
imately quadratic dependence on the excitation amplitude has been observed. This may
shed some light on the role of nonconsolidated components in mechanisms of nonclassical
elasticity.

4.2. “Bed of nails” model of cracks. – Another important element of rock structure are
microcracks. The fact that cracks strongly enhance nonlinearity has been experimentally
confirmed numerous times for different materials, including ice [52]. Opening and closing
of cracks can radically change the elastic modulus.

A corresponding extension of the Hertzian model (that is similar to the “bed of nails”
model introduced by Walsh [53] for the linear problem but is based on contact nonlin-
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earity) was considered by Nazarov and Sutin [54]. In this model, portions of the bond
system are assumed to be rough, and, under compression, they randomly contact each
other (similarly to fig. 23). The force on individual contacts depends on the shape of
the contacting surfaces. In order to understand the effects of contact geometry on the
result, three shapes were considered: spheres (as above), cones, and wedges. The force is
proportional to ε3/2, ε2, and ε, for the spheres, cones, and wedges, respectively. A distri-
bution function W (h) of contacts within a single crack is proportional to exp[−h/hs]/hs,
where h is the height of the contact and hs is a constant.

The quadratic nonlinearity parameter is found to be

2β =
bNc

7 (1 + 3aNc/5)2
,(15)

where

a = πR2hs (E/σ0) (1 + hs/d0)
−1
,(16)

b = πR2hs (E/σ0)
2 (1 + hs/d0)

−3
.

Here σ0 is a static stress, d0 is the average distance between the crack surfaces, E is
Young’s modulus of the material, and Nc is the unit volume number of cracks. The au-
thors estimate that for cracks with conical contacts reduce the effective linear parameters
of the medium, Young’s modulus and Poisson’s ratio, by only about 1%, but increase the
quadratic nonlinearity parameter β up to a value of 500.

Note that acoustical remote sensing methods have been suggested for nonlinear crack
diagnostics (e.g., [55]) in situ, however, their feasibility has not been tested.

4.3. The role of fluids in the bond system. – It is common knowledge that the presence
of fluids significantly affects linear properties of rocks (sound speed, losses), see e.g., [56],
[57] and [58]. These effects are often considered in the framework of the phenomenological
Biot theory which provides at best a qualitative description. The experiments mentioned
above [22] show that the elastic nonlinearity of rock is also significanly affected by the
presence of fluid.

Let us briefly discuss nonlinear models based on wet Hertzian contacts. A simplest
case is that of a 100% filling of the intergrain space (100% saturation) [47]. In this case,
the fluid provides an additional elasticity effect to that of grain contacts. The resulting
EOS (neglecting the atomic fluid nonlinearity) has the form

σeff =
Kf

φ+ (1 − φ)Kf/Ks
ε+

n(1 − φ)Es

3π(1 − ν2s )
ε3/2,(17)

where Kf and Ks are the bulk modulus of the fluid and solid phase, respectively, and φ
is the porosity.

Relation (17) predicts a decrease in nonlinearity of the entire medium, but it applies
only near 100% fluid saturation. This is understandable: complete pore filling adds
to the rigidity of the system. However, for a relatively small degree of saturation the
effect can be the opposite because strong effects such as capillary and dipole forces enter
in. Indeed, the observations mentioned in fig. 8 indicate that for small and moderate
water saturation the nonlinearity increases. To describe this effect it seems necessary
to consider forces acting on grains due to a thin fluid film between them. For instance,
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Fig. 24. – Hertzian contact containing water.

these forces were considered in detail from the thermodynamic viewpoint by Tutuncu
and Sharma [58] and their predictions provide reasonable agreement with measurements
of sound velocity and attenuation.

For nonlinear effects, we applied a more simple and direct consideration [49] of the
contact between two spheres of equal radii R (fig. 24) divided by a thin water layer. The
attractive capillary force between them is

Fc =
2V γ cos Θ
(D + h)2

,(18a)

where γ is the surface tension coefficient, Θ is the angle between surfaces of fluid and
solid, V is the volume of fluid between contacting grains, D is the minimal equilibrium
thickness, and h is the displacement due to external (acoustic) stress. Considering the
change of the latter parameters due to acoustic deformation at a fixed fluid volume and
averaging the material over the bulk, it is possible to find the contribution of capillary
forces to the EOS:

σc =
2V γ cos Θ

πR2D2 (1 + 2εR/D)
.(18b)

This stress must be added to the Hertzian stress considered above. It follows from here
that the intergrain fluid decreases the linear elastic modulus and for a harmonic strain
this effect increases with growth of the strain amplitude (i.e. the cubic nonlinearity
coefficient is negative). These results qualitatively agree with experiment where the
resonance frequency decreases with the excitation amplitude. Note that analogous results
were obtained by Nazarov [59] for fluid-filled cracks with planar geometry.

Preliminary estimates show that an especially strong fluid contribution should be
expected when grain contacts are separated with very thin fluid layers, of the order of
few or few tens of monolayers. In this case, a dipole van der Waals force can be dominant.
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For a flat contact, this force is

Fd =
Ā

6πd30
,(19)

where d0 is the thickness of the gap, and Ā is the Hamaker constant (of order 10−13–10−14

erg for water). The corresponding stress should again be added to the Hertzian force.
It should be noted that elasticity of fluid films can be hysteretic (due to different values
of Θ for the oscillating displacements (18a) [60]) and also provide the time-logarithmic
relaxation of parameters as demonstrated in [24]. This is an area of intense study.

A significant study based on the theory of liquid-vapour balance developed in [61]
was performed by Van Den Abeele et al. [22]. Their estimates indicate that the influence
of fluid can be strong for pore sizes of the order of or less than a micron. They also
interpreted the macroscopic effect of a small amount of water by a shifting of hysteretic
elements in PM space discussed above.

4.4. The role of transverse deformations. – In a series of papers by D. Johnson and
colleagues (e.g., [62]), a detailed analysis of nonlinear properies of granular media un-
der the influence of static pressure was carried out. These authors took into account
Hertz theory and the Mindlin relation (and its variations) stating that, upon normal
compression, a tangential displacement, s, may arise at contacts that, in general, creates
an additional transverse force:

Fτ =
4µa(∆)s

1 − ν
.(20)

Here again, ∆ is the relative displacement of spheres, µ is the shear modulus of the ma-
terial, and a is a characteristic length depending on the nature of surface contacts. For a
“pure” Hertzian contact with reversible slip, a = 0, but for a rough, nonslip contact, it is√
R∆ or, in case of precompression with an initial contact radius b, [(R2∆2 + b2/4)1/2 +

b2/2]
1
2 . This results in some new features such as the dependence of forces and energy on

path of deformation. Indeed, in general, transposing of normal and transverse displace-
ments changes the work of the external force. This is actually a hysteretic phenomenon,
that causes, e.g., attenuation of an elliptically polarized acoustic wave. However, a pos-
sible role of this mechanism in rock hysteresis is still unclear. See [62] for more.

4.5. Granato-Lücke model . – In many hysteretic materials, the bond system is crys-
talline. Therefore dislocations within the crystalline lattice of the bond system could
conceivably produce the nonlinear response. A physical model based on dislocations in
metals was suggested by Granato and Lücke (GL) as early as in 1956 (see [5]). They
used an analogy between a segment of a dislocation line pinned to impurity atoms, and
the motion of a string in order to describe elastic deformations (fig. 25a). As the stress
increases (normally shear stress), dislocations deform like pieces of string until, at some
critical stress, they are disconnected from all impurity atoms between the nodes of a
crystalline structure. As a result, the material becomes softer, which results in strong
nonlinearity in the stress-strain dependence (fig. 25b, solid line)). This process is irre-
versible at the atomic scale: upon reducing stress, the system returns to equilibrium
along a “soft” line. However, the resulting equilibrium state may be the same before
and after inducing the dislocations to react. The model also incorporates slow dynam-
ics, because the equilibrium state takes some time to restore. In reality, the distances
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Fig. 25. – (a) Granato-Lücke model of string-like dislocations. (b) Resulting stress-strain curve
for a single dislocation (solid line) and a distribution of dislocations (dashed line).

between the sticking points are statistically distributed, which smooths the hysteretic
loop (fig. 25b, dashed line). Hybrids of the GL model include other aspects such as
frequency dependence. In spite of some disadvantages, this model was truly a pioneering
micromodel for hysteretic dynamic behaviour.

If we consider a triangular stress-strain curve (fig. 25b) with a given strain ε1 of
depinning for each element (string), and the initial line σ = Aε (at ε < ε1) is sufficiently
close to the line σ = A0ε after depinning (weak nonlinearity), then on the plane of ε− ε1,
σ − A0ε we have almost a rectangular-triangle loop. This is similar to the PM space
model considered above. Indeed, if we have a distribution of these elements in values of
ε1 (or A) which is a constant for a narrow range of ε1 and zero outside of it, we obtain
the same scalings as for the PM space model (rectangular triangles instead of rectangles).
This implies that the HEUs in the PM space model may be qualitatively analogous to
the GL dislocations, where the contacts between grains have tangential deformations (see
Asano’s “ratchet” model mentioned above).

4.6. Slow dynamics. – As mentioned in the experimental portion of this paper, hys-
teretic nonlinearity typically is accompanied by slow dynamics, slow recovery of the initial
equilibrium state after a disturbance. Earlier models of relaxation in rock were based on
a phenomenological description. A simple model for the nonlinear portion of the elastic
modulus, ∆K, assumes a constant relaxation time τ (or several time constants) [64],

τ
d∆K

dt
+ ∆K = λGn .(21)

When, at t = 0 and ∆K = 0, a constant-amplitude signal having the form Gθ(t) is
introduced into a material, where θ(t) is a step-function (Heaviside function) equal to 1
for t > 0 and 0 for t < 0, this equation gives

∆K(t) = −λGn
(
1 − e−t/τ

)
.(22)
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However, in all experiments in rock and related materials that we are aware of [24,25]
the relaxation process is logarithmic in time rather than exponential. Tencate et al. [24]
proposed a possible physical model for this effect based on the statistics of bond restora-
tion at microcontacts in granular media after their rupture by an acoustic disturbance.
The rate of this process, g(E), is proportional to exp[−E/kT ], where E is the correspond-
ing energy barrier, k is Boltzmann’s constant, and T is the temperature. In turn, the
density ρ (E) of unrecovered bonds is proportional to exp[−g(E)t]. The elastic modulus,
K, is assumed proportional to the total contact area between grains. Thus, the unre-
covered part of K is proportional to

∫ E2

E1
ρ(E)dE , where E1 < E < E2 is the interval of

barrier energies participating in the process. If the range of E2 − E1 is reasonably small,
it can be presumed that ρ (t = 0) ≈ ρ0(Ec) and Ec is a characteristic energy within this
interval, so that only variation of the exponents is taken into account. As a result, for
the time variation of the modulus, the logarithmic relation readily follows:

K(t2) −K(t1) ∼ ln(t2/t1).(23)

The time interval in which this formula applies is limited by the above assumption that
Ec lies in the barrier energy range. The authors estimate Ec ∼ 1 eV and conclude that
the model works for crystal defects, some dislocations, or surfactant bonds. To explain
experimental data, they also infer that, apart from the acoustic strain, thermal activation
softens the bonds. This work can be important for understanding the mechanisms and
scale of hysteretic nonlinearity.

A recent experimental and theoretical study by Josserand and colleagues [66] of mem-
ory effects in vibration-induced compaction of granular materials describes some intrigu-
ing similarities to granular solids. Josserand and colleagues monitor the grain packing
vs. exitation by tapping. This is analagous to the “conditioning” portion of experiments
conducted in rock (for instance those shown in fig. 9). Interestingly, the evolution of the
packing fraction of the grains is dependent on the future evolution of the packing fraction
and on the previous disturbance history. This is a memory effect during conditioning, and
may be related to “discrete memory” as we know it. The “recovery” of the material after
the disturbance is complete is not monitored in this study. This could be an interesting
experiment to see whether or not recovery has a log(time) dependence as it does in rock.

5. – Nonlinear waves in rocks

To explain experimental data, it is necessary, along with the construction of material
models, to understand the peculiarities of waves in these materials. From the above
considerations and experimental data it can be expected that these processes are more
complex than those in nonlinear acoustics describing most fluids and intact solids.

For the wave models that follow, we begin with the basic classical equation (2) in
which only physical nonlinearity is taken into account(3). In each case, we introduce
nonclassical descriptions after the classical descriptions.

5.1. Travelling waves. – We begin by considering travelling (progressive) waves in an
unbounded material with strong nonlinearity. For a one-dimensional travelling wave, the

(3) As noted, this equation is sufficient for the description of waves in both Lagrangian and
Eulerian coordinates, provided the dependence σ(ε) is known and physical nonlinearity is strong.
This reduces the total order of governing equations and simplifies the description.
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strain ε ≈ −v/c, where v = ut is the particle velocity, and c is the sound velocity(4).
When the Taylor expansion (5) for c is valid, a well-known solution in the form of a
simple (Riemann) wave follows from eq. (2):

ε = ψ [x− c(ε)t] ,(24)

where ψ is an arbitrary function defined by the initial condition, and c(ε) is the local
wave speed. Propagation of such a wave in acoustics is known to result in the appearance
of shocks and then formation of sawtooth (see fig. 1) or of triangular waves (e.g., [7]),
which dissipate as x−1 or x−1/2, respectively. Using only the quadratic approximation,
harmonic amplitudes of the initially sinusoidal wave are defined (before shock formation)
by the well-known Bessel-Fubini expansion in which all harmonics are expressed in terms
of Bessel functions. For moderate distances (much less than that required for shock
formation), the second-harmonic amplitude is proportional to the distance x, and the
third-harmonic one is proportional to x2. The quadratic nonlinearity parameter, β, can
be experimentally obtained from a measurement of the amplitude of the second harmonic
of displacement, A2, generated at a distance x from a pure tone (single frequency) source
signal,

β =
8A2c

2
0

A2
1ω

2x
,(25)

where ω is the fundamental frequency and A1 is the amplitude at the fundamental fre-
quency. In rocks and other materials, higher-order terms are used in order to describe the
nonlinear response. For instance, the third-harmonic amplitude is proportional to A1

3;
its value depends, in general, on both quadratic, β, and cubic, δ, nonlinear parameters.
More details can be found in [65].

5.2. Travelling waves and hysteresis. – Looking back at the primary indicators of
nonlinear structural elasticity described earlier, we saw that nonclassical, hysteretic be-
haviour is characterstic. Thus we turn to wave solutions that can describe this behaviour.

The evolution of a nonlinear wave in hysteretic media described by eq. (6) is consid-
erably different from that of a wave in atomic elastic media. Several problems of this
kind have already been addressed in [67-70,72]. First, note that for two basic hysteretic
models shown above in fig. 18, “ratchet” and “slider” types, the wave distortion processes
are significantly different. In refs. [68] and [70] the hysteretic relation of type (6) has
been considered in the case when the “classical” parameters β and δ are absent and the
nonlinearity is of a “ratchet” type (fig. 26a): σ and ε go to zero simultaneously. In this
case shocks do not appear. However, due to the singularity at the wave maximum, the
portions of the wave on either side of the wave peak move with different velocities, thus
“consuming” each other and resulting in the formation of a triangular profile without
shocks. The corresponding qualitative pattern of the evolution of the pulse is shown in
fig. 26b taken from [70]. When the wave reaches the triangular stage, the amplitude
εm of an initially sinusoidal wave nonlinearly attenuates as 1/x, and is proportional to

(4) Indeed, ε = ∂u/∂x and v = ∂u/∂t. For small nonlinearity (even if it is much stronger than
that in “atomic” materials), in a travelling wave ∂u/∂t ≈ −c(∂u/∂x), and therefore, ε ≈ −v/c.
In this sense, the strain plays the role of the acoustic Mach number. Although we consider
nonlinear effects, this relation is valid in the first approximation.
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Fig. 26. – Propagation of a unipolar pulse in a medium with hysteretic nonlinearity. (a) Stress-
strain relation. (b) Perturbation profiles with progressive distance (1-4). Phase θ = ωt, and θm

is the duration of the perturbation.

√
ε0 where ε0 is the initial wave amplitude, as shown in [72]. In the latter work, the

“slider” model is considered when, for a periodic process, EOS is a loop going around
the center so that ε 	= 0 when σ = 0. In this case, εm is again proportional to 1/x but
asymptotically so, and it does not depend on ε0 (similar to the case of a sawtooth wave
in a nonhysteretic medium with quadratic nonlinearity). Note that in the general case,
when classical nonlinearity is present along with the hysteretic one, the wave can contain
both “triangles” and shocks.

5.3. Standing waves in resonators . – The theory for standing waves is more compli-
cated due to nonlinear interactions of oppositely propagating waves. In the general case,
one should solve a nonlinear wave equation (2) with an external forcing and boundary
conditions at the end of the bar. In terms of displacement, u, this equation is

ρ

(
ü+

1
τ0
u̇

)
=
∂σ(x)
∂x

+
1
2
F0(x)

[
ei(ω+∆ω)t + c.c.

]
,(26)

where F0(x) is the external force amplitude, ∆ω is the frequency shift (detuning) from
a linear resonance mode, and τ0 is a characteristic time of linear damping: τ0 = Qn/ωn,
Qn being a linear quality factor at a resonance frequency ωn.

For small nonlinearity, the structure of resonance modes is close to that of the linear
system although their amplitudes are strongly affected by nonlinear interaction. Thus,
it is adequate to use an expansion of the solution for u into the modal series:

u = n
∑

An(t)Φn(x) ,(27)

where Φ is the eigenfunction of the linear wave to be found with the use of corresponding
boundary conditions at the bar ends (For a bar of the length L with free ends, Φn =
cos kx, where k = nπ/L and n is an integer mode number.) As a result, a system of
ordinary differential equations for An follows, that can usually be reduced to a system
of a few interacting resonant modes (e.g., [6]).

The efficiency of nonlinear response depends on the boundary conditions at the bar
ends. For the free ends, third harmonic amplitudes will be cumulatively generated,



36 L. A. OSTROVSKY and P. A. JOHNSON

unlike the second harmonic. This may result in domination of the third harmonics in
the experiments, even if the quadratic nonlinearity of the material is large as it often is,
especially for longitudinal waves in atomic elastic media. The explanation is as follows.
If the bar ends are fixed (e.g., due to loading by heavy masses), the wave pressure
is reflected in-phase, and (in a nondispersive material) the harmonics will continue to
accumulate upon end reflections as in a travelling wave. In other words, all standing
modes will be generated in phase. However, for the free ends typically used in such
experiments, the pressure phase change is 180 degrees upon reflection. As a result, the
fundamental (first) and third harmonics will be shifted, respectively, by π and 3π whereas
the second harmonic by 2π (as the square of the first one), and it will be generated with
the opposite phase with respect to the primary wave, thus decreasing and suppressing
the existing second-harmonic field due to interference. The wave at frequency 2ω (and
all even harmonics) will alternately grow and decay upon reflections so that the effect
is not cumulative (e.g., [6, 7]). On the other hand, the third harmonic remains in phase
with the first one (their relative shift is 2π) and shows progressive amplitude increase
independent of whether the boundary is fixed or free.

Substituting into (26) a solution of the form (27) for the n-th mode, e.g., u =
U cos knx exp[−i(ωn + ∆)t/2], multiplying by cos knx and integrating over the length
L of the bar, we obtain an equation for the amplitude U in equilibrium,

ρ (−ωn∆ + iωn/2τ0)U = kn

〈
σN
1 (|U |)〉 + 〈F0n〉 .(28)

Here the stress is σ = E(∂u/∂x) + σN (ε) with N denoting the small nonlinear portion,
σN
1 is the first temporal harmonic of nonlinear stress, and 〈f〉 = L−1

∫ L

0
f(x) cos knxdx

denotes spatial averaging of the corresponding value f , and E is the Young modulus, so
that c0 = ωn/kn = (E/ρ)1/2. Hence, we have an equation for the amplitude-frequency
resonance dependence, |U |(∆),

|U | =
〈F0〉 /2ρ√

(2∆ωn + kn

〈
σN
1 (|U |)〉 /ρ|U |)2 + (ωn/2τ0)2

.(29)

The result clearly depends on the EOS of the medium. In a classical cubic medium,
when σN ∝ u3, this relation defines a well-known nonlinear resonance curve with the
nonlinear frequency shift proportional to |U |2. In hysteretic media,

〈
σN
1 (|U |)〉 ∝ |U |,

and the frequency shift is also proportional to |U |.
To find a higher, m-th harmonic of, say, the first-mode oscillations, one should use a

perturbation method. That is, after obtaining the basic amplitude as above, we represent
a solution in the form u = u1 + um, where u1is the above solution at the fundamental
frequency and um = Um cos kmx exp [im(ω + ∆)t] corresponds to the harmonics possibly
resonating at a higher (m-th) mode. As a result, the equation for Um has the form
(28) where now the corresponding m-th harmonic of σN

m(|U |) should be taken. Thus, we
get an expression for Um(∆) that is similar to (29) in which the role of the force 〈F0〉
is played by the first harmonic of stress, kn

〈
σN
1 (|U |)〉. For classical nonlinearity, the

amplitude of the second harmonic in resonance is proportional to |U |2, and for the third
harmonic, to |U |3. For nonanalytical, hysteretic models we obtain different dependences
which are often observed in experiments with rocks.

For hysteretic media, the interaction of counterpropagating waves reflected from the
bar ends is associated with a complex picture of switchings corresponding to nonanalytical
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Fig. 27. – Ring resonator.

points in the EOS. For small distortions of initially harmonic waves, spectral expansion
is typically used to find the small higher harmonics [67,71]. Van Den Abeele and Tencate
[73] applied a similar approach to the average elastic modulus found from the PM space
model.

Another model that is valid for strong deformations of the wave profile [72] is a ring
resonator (similar to that used in experiments described in [6]) where a resonance mode
can be a wave travelling around the ring and undergoing nonlinear distortions until it is
balanced with a harmonic source applied at some point (fig. 27). A hysteretic medium
described by the two aforementioned types of phenomenological stress-strain loops has
been considered in [72]. In the “ratchet” case, the strain amplitude in a steady-state
regime, εm, is proportional to

√
u0, where u0 is the excitation amplitude, and the effective

Q-factor of the resonator is proportional to 1/
√
u0 that is similar to nonlinear oscillations

in a resonator with a “classical” quadratic medium [7]. For a “slider”-type hysteresis,
εm ∝ u0 and Q is independent of amplitude, just as in a linear medium! However, in this
case the wave form is still nonlinear, as shown in fig. 26b, and in case of free damping,
its amplitude will, at a nonlinear stage, attenuate at a power rate, not exponentially.

All these results are valid when the hysteretic loop consists of parabolic sections (an
analog of quadratic nonlinearity). Otherwise, a frequency shift occurs, which can be
proportional to |u0|, which is impossible for an analytical stress-strain dependence but
is observed in experiments.

5.4. Numerical simulations. – For media with hysteretic properties, analytical solu-
tions are rare, and numerical experiments are necessary. The difficulty associated with
the discontinuous stress-strain dependence was addressed by using its discrete Fourier
series expansion(5). Strong wave distortion was calculated by a finite-difference proce-
dure. Frequency-dependent attenuation was accounted for at each step in the iteration
by a commonly applied ad hoc method where dissipation is proportional to velocity. See
also, for instance, the work of Day and Minster [74].

Recently, Delsanto and others [75] applied the “local interaction simulation approach”
(LISA) to numerical model resonance and pulse-mode waves in one dimension, based on
implemenation of the PM space model. Figure 28 shows model predictions from LISA
for a quasistatic (a) and (b)-(d) for dynamical numerical experiments. An important

(5) An analytical expression describing the distortion of a pulsed signal was then obtained;
however, this expression was found using perturbation theory, so that it is restricted to small
distances from the source.
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amplitudes in an classical (atomic elastic) material (left) and nonclassical (highly nonlinear)
material (right). (c) Predicted dependence of frequency shift on strain showing the correct slope
of 1. (d) Second (left) and third harmonics (right) as a function of strain amplitude, for classical
and nonclassical materials.

feature of LISA is that it provides the capability of implementing at the local level very
complex mechanisms. In fact, the method allows full freedom in the choice of interaction
between nodes, representing the material cells. It is also possible, by splitting the nodes
at the interfaces between different material components, to consider problems of interface
delaminations and other surface flaws. One can also assume that the local elastic forces
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may undergo local variations, in particular nonlinear ones, such as leading to hysteretic or
plastic behaviour. This will be important as the mechanism of nonlinearity is unravelled.
This group is in the process of implementing slow dynamics and expanding the model to
two- and three-dimensional predictions.

6. – Field experiments

Field observations of nonlinear effects have a relatively long history. In situ experi-
ments include studies using both active and passive source observations. Some of early
experiments are described in a special issue of Physics of the Earth and Planetary In-
terior, No. 1 (1988). Results include field observations from earthquakes, earth tides,
and vibroseismic sources. However, these experiments are often difficult to interpret and
therefore the results are of uncertain reliability. Indeed, considering the complexities
of the near surface of the earth and the distortions it imposes on seismic waveforms,
both linear and nonlinear, it is extremely difficult to extract and analyze the nonlinear
response in situ. Here we present a selection of some observations.

6.1. Active observations. – Observations in the field using large vibrator sources have
been made by several groups, including Beresnev and Nikolaev [76] at the Institute of
Earth Physics in Moscow, and the group at Los Alamos in collaboration with researchers
at Lawrence Berkeley Laboratory (T. V. McEvilly, private communication, 1994). These
observations have involved standard seismic exploration sources (such as vibroseis) and
detectors. Based on our experience, the results of these experiments have been am-
biguous, due to the possibility that the observed harmonics could be attributed to the
nonlinearity of the sources (seismic vibrators are notoriously nonlinear). Observations
by Beresnev and Nikolaev seem to indicate that nonlinear response was developed along
the propagation path in similar studies. However, these results were still disputed in
some publications arguing that the observations could be attributable to the source.

Nikolaev and co-authors [77,78] performed field experiments in which the response of
a vibrator resulted in time-average elevation of near-source ground area. According the
nonlinear wave theory, this effect is a result of a quadratic nonlinearity in the medium.

Note that at times field observations have been interpreted in a more unconventional
manner. For example, in papers [92] the possibility was discussed of wave amplification
via “dilatons” defined as “short-lived microdynamical density fluctuations” which are
able to lock-in energy from the surrounding medium and, after exceeding some threshold,
release it as an elastic wave. In principle such processes are possible in thermodynamically
nonequilibrium states but no detailed development of this hypothesis has been done, and
no direct experimental evidence of such mechanisms in rocks exist.

6.2. Earth tides and nonlinear response. – A pioneering work in the study of the
nonlinear response of the whole earth to the tides caused by lunar and solar motions was
reported, for example, in [79,80]. Study of earth tides for nonlinear response has several
advantages over the use of long-period seismic waves; earth tides are narrow band, and
tidal forces are precisely known from astronomy. A disadvantage in the use of earth tides
is contamination by ocean tides and their nonlinear influence, and poor spatial resolution
because the wavelengths are so long and maximum strains are of order 10−8 [79].

The careful study presented by Agnew [79] is a good example. He hypothesized
that the primary nonlinear effects come from the nonlinear EOS curve and hysteresis.
Data from a three-component laser strain meter located at Pinon Flats Observatory in
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southern California were used in the analysis. Data collected for 5.7 years were used from
which Agnew averaged spectral portions 100 days each in duration. From his analysis the
harmonics of tidal frequency were retrieved. Agnew found that the third harmonic (M6)
prevailed over the second harmonic (M4), which is an indicator of nonclassical behaviour.

6.3. Strong ground motion. – An obvious candidate for the study of nonlinear effects
are strong earthquakes, and this has become a huge topic within itself, especially in the
last five years (e.g., [84, 28]). The bulk of papers on this topic, known as strong ground
motion, can be found in the Bulletin of the Seismological Society of America. A critical
aspect of strong ground motion is the presence of consolidated or loosely consolidated
sedimentary layers at the Earth’s surface (see, e.g., [83]). It is well known that the reso-
nance wave amplification can typically be several times larger than that for a nearby rock
site assumed to have the identical source and wave path effects. This amplification leads
to larger strain levels which may induce, or further enhance, nonlinear response, such as
the nonlinear resonance frequency shift in the low-sound speed upper layer and losses
due to material softening and hysteresis. Examples of this behaviour include all of the
most damaging earthquakes of the latest decade, including the 1985 Michoacan (Mexico),
the 1989 Loma Prieta (California), the 1994 Northridge (California), and the 1995 Kobe
(Japan) earthquakes. Typical detected wave strains in these earthquakes are 10−4 to
10−9 in frequency range from 0.1 to 100 Hz. The analysis of Field and colleagues on the
1994 Northridge earthquake presented the first of convincing observations of nonlinear
behaviour in sediments from an earthquake source [85].

7. – Potential applications

We believe that potential applications of monitoring nonlinear response exist in both
geophysics, seismic hazards, material science and nondestructive testing (NDT). Geo-
physical applications are only beginning to be realized. Realistically, applications such
as monitoring of physical property change, both in the laboratory and in the field, are
areas that are now being addressed. All our collaborators are active in these areas. In
particular, we anticipate that potential borehole and core applications may well come
about. For example, extraction of nonlinear parameters from borehole or core methods
that could be applied to rock strength issues such as borehole stability and hydraulic frac-
turing may be quite realistic. Application of these methods may also make it possible to
localize regions of macro- and micro-crack appearance in the vicinity of structures that
are of high potential risk, such as nuclear power stations, chemical installations, dams,
etc., in active earthquake regions. Other potential applications are remote monitoring of
areas in the Earth’s crust that may undergo stress changes using passive or active seis-
mic monitoring, as well as petroleum exploration, although additional study is needed to
evaluate their feasibility. Nonlinear methods of evaluation of sea sediments [86] are also
promising.

7.1. Nondestructive testing of materials. – In recent works by several groups, appli-
cations of nonlinear response to nondestructive testing (NDT) of materials has proven
to be a powerful tool in interrogating materials for damage, and the area is expanding
rapidly. The original work in this area can be attributed to the group at Nizhny Nov-
gorod (e.g., [21, 87]). Some work has been done in study of progressive fatigue damage
in rock and concrete [90, 88], but the bulk of studies have been in other materials that
exhibit the same manifestations of nonlinear response as rocks, see, e.g., [1, 89,90,25].
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In short, the nonlinearity due to the presence of the cracks is an extremely sensitive
indicator of the presence of damage and a tool to monitor progressive damage. The
undamaged portion of the sample produces a very small nonlinear response that is atomic
in nature. The damaged portion of the material acts as a localized nonlinear mixer
producing a significant, nonclassical nonlinear response (in contrast to a rock where the
nonlinear response is volumetric). This behaviour is manifest in two primary ways when
sound is applied to the object. Just as in volumetrically damaged granular materials,
the effects of resonance frequency shift and generation of new frequency components can
be large in damaged material but nearly unmeasurable in undamaged materials.

Figure 29a illustrates a method that exploits sideband mixing, which we term Nonlin-
ear Wave Modulation Spectroscopy (NWMS) [89,90]. In this method, an object is struck
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by an impulse while being simultaneously driven by a pure-tone continuous wave. The
impulse causes the sample to ring at its resonance modes, and those modes mix with the
pure tone producing sidebands around the pure tone. We show spectra from experiments
in undamaged and damaged automobile engine bearing caps in figs. 29b,c near the pure
tone frequency of 115 kHz. The difference is impressive. The sample contains a crack
several millimeters deep and about a centimeter long.

The resonance experimental procedure shown in fig. 4 and the result shown in fig. 5b
can be employed to discern damage as well. Figure 30 illustrates results from this tech-
nique, termed Nonlinear Resonance Ultrasound Spectroscopy (NRUS), in samples of un-
damaged and damaged concrete-based slate reinforced with fiber, from Van Den Abeele
et al. [91]. Clearly, the damaged sample is significantly more nonlinear (resonance curves
more asymmetric) than the undamaged sample.

In all such experiments, it has been observed that the dependences with strain am-
plitude are the same as those observed in other highly nonlinear materials (e.g., [25]).

0
0

1

10

100

1000

0.2 0.4 0.6 0.8 1

Failure

R
el

at
iv

e 
C

h
an

g
e

Damage Index DM = 1-E/E0

Resonance Frequency
Linear Damping
Nonlinearity

E

Q

α

Fig. 31. – Change in normalized linear (resonance frequency and linear damping) and nonlinear
response as a function of progressive damage. Each value is normalized to its linear value (the
value at the beginning of the experiment before any damage has been induced). See text for
more.



DYNAMIC NONLINEAR ELASTICITY IN GEOMATERIALS 43

Progressive damage. The result of applying NRUS in a cyclic fatigue loading experi-
ment in a large bar of concrete from [90] is shown in fig. 31. In the figure, the variation
of the linear (resonance frequency and attenuation) and nonlinear (from resonance shift)
material parameters with respect to their initial values as a function of the damage index
DM are shown. In the experiment, the applied load was cycled up to 28 times, which
is large enough to induce permanent fatigue damage after several hundreds of cycles.
After each cycle during the test, the apparent instantaneous modulus, E, is calculated
from quasi-static force-displacement curves. This value is then compared to the initial
modulus value, E0, and used to define a damage index DM , such that DM = 1−E/E0.
It is clear that the nonlinear response is far more sensitive than the linear response in
detecting the onset and progression of damage.

In summary, the above nonlinear methods illustrate the new frontier in acoustical
nondestructive testing of materials for damage. In fact, measurement of nonlinear be-
haviour may well be the most sensitive method available for study and early detection
and the progression of damage. There are potentially a huge number of applications
of enormous economic and safety impact that will evolve from nonlinear applications.
Several companies have already begun to develop sophisticated instruments for this type
of analysis.

8. – Conclusions

From the experimental results outlined in this paper we infer that the micro-to-
nanoscale “bond system” (microcracks, dislocations, etc.) is responsible for strong hys-
teretic nonlinearity. The bond system, which is a small fraction of the total volume of
the material, links hard grains or crystals at scales of microns to millimeters, that are
atomic elastic in nature and therefore contribute little to the elastic nonlinearity of the
material. It is clear that this is an extremely rich area of material physics, one that
bridges macroscopic behaviour, mesoscopic granular structure, and nanoscale features.
A joint mechanical, thermodynamical and possibly even quantum-physics approach may
be necessary for understanding the physics of nonlinearity in rocks. In addition, new
problems in nonlinear wave theory must be addressed such as wave propagation and
interaction in hysteretic media. At any rate, the fundamental and persistent problem of
a full understanding of the mechanisms of strong nonlinearity in rocks and other similar
materials remains to be solved, and this issue is currently being actively addressed.
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